25m3/d地埋式生活污水处理设备
25m3/d地埋式生活污水处理设备
针对各个处理构筑物的节能途径
1污水提升泵房
污水提升泵房要节省能耗,主要是考虑污水提升泵如何进行电能节约,正确科学的选泵,让水泵工作在段是有效的手段,合理利用地形,减少污水的提升高度来降低水泵轴功率N也是有效的办法,定期对水泵进行维护,减少摩擦也可以降低电耗。
2沉砂池
采用平流沉砂,避免采用需要动力设备的沉砂池,如平流沉砂池。采用重力排砂,避免使用机械排砂,这些措施都可大大节省能耗。
3初次沉淀池
初次沉淀池的能耗较低,主要能量消耗在排泥设备上,采用静水压力法无疑会明显降低能量的消耗。
4生物处理构筑物
国外的学者通过能耗和费用效益分析比较了生物处理工艺流程,他们认为处理设施大部分的能量消耗是发生在电机这类单一的设备上,因而节能应从提高全厂功率因数、选择机电设备及减少高峰用电要求等方面入手。他们提出的节能措施既包括改善电机的电气性能,也包括解决运转的工艺问题,还包括污水厂产物中的能量回收(Energy Recovery)。
曝气系统的能耗相当大,对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新。新型的曝气设备虽然层出不穷,但目前仍然可划分为2类:*1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法,*2种是采用机械方法搅动污水促使大气中的氧溶于水的方法。微孔曝气,曝气扩散头的布局和曝气系统的调节这些都是节能的有效措施。在传统活性污泥处理厂曝气池中辟出厌氧区,用淹没式搅拌器混合的节能、生物除磷方案。这一简单的改造可以节省近20%的曝气能耗,如果算上混合用能,节能也达到12%。自动控制系统的应用于污水处理节能,曝气系统进行阶段曝气,溶解氧存在浓度梯度,既减少了能耗,又可以改善处理效果,减少污泥量。
生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗。
5二次沉淀池
二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法。
6污泥处理
污泥处理系统节能研究主要集中于污泥处理的能量回收。从污水污泥**污染物中回收能量用于处理过程早在上世纪初就已投入实践,但能源危机之**直不受重视。目前有两种回收途径:一是污泥厌氧消化气利用,一是污泥焚烧热的利用。
二沉池出现细碎污泥翻滚、浑浊现象的原因?
好氧池污泥负荷过小,曝气过量,污泥自身氧化,导致污泥絮凝性变差,污泥结构分散(水浑浊而悬浮物多)。
好氧池污泥负荷过大,溶解氧不足,污泥吸附性能变差,**物未能完全分解掉。
二沉池负荷过高,或二沉池池配水不均匀出现重力流现象,局部流快将污泥带起。
二沉池回流比过大,二沉池泥层过低,水流觉动泥层过大(此原因较少)。
好氧池污泥排放量过大导致好氧池污泥泥龄过短,新合成的污泥絮体难以沉降,(水清澈而悬浮物多)。
好氧池污泥铃过长,污泥老化。
好氧池污泥营养料不足或者营养料比例不均(N、P比例过高)。
好氧池污泥发生污泥膨胀现象,沉降性差,二沉池泥层高,水流将污泥带出(svi值过高或过低都会出现此情况)。
好氧池污水中氛氮含量过高。
二沉池出现浮渣浮泥现象的原因?
二沉池回流比小,污泥停留时间过长,污泥厌氧反峭化后被气体携带上浮。
好氧池进入大量物化污泥和厌载污泥,由于部分不能转化乃好氧污泥变为浮渣排出系统。
好氧池污泥变质。
好氧池泡沫多,与污泥/悬浮物等混合后到二沉池上浮。
好氧池污泥浓度低(污泥负荷高)或者溶解氧过高(有可能)。
好氧池污泥老化或者泥龄过短,絮凝性差,COD去除率和处理效果差。
好氧池溶解氧不足的原因?
好氧池污泥浓度上升较快或者污泥老化导致耗氧量增加。
厌氧池出水悬浮物很多,进入好氧池后消耗大量的溶解氧。
鼓风机出现故障停止运行或风机压才不够(出现此情况较少)。
厌氧池出水COD突然升高很多,或进水突然增大,冲击负荷大,导致好氧池负荷变大。
曝气头损坏或堵塞比较严重,好氧池泡沫多。
15762525161.b2b168.com/m/