地埋式MBR小型一体化污水处理设备
流离生化遵循四个原则,则可污泥发生:
① 聚结固形物,微生物大量繁殖;
② 使聚结的固形物产生移动;
③ 移动时,好氧、厌氧过程多次重复发生;
④ 固形物在构筑物内不断移动,其停留时间按日单位计算。
以上四原则判断如下三种固液分离原理就可以得知:
① 沉淀:分离的固体堆积在池底部无移动性能,原封不动的单一环境,故不分解;
② 过滤:被介质过滤下来的SS,聚集到一处,其状态和沉淀原理一样,难以移动,因此亦不分解;
③ 流离:集中在生物载体内,经过厌氧状态使其水解酸化、流出、再被好氧分解,因此,污泥通过生物载体连续不断的流离,产生分解和消化。
以上得知生化流离不需要处理污泥,所以是目前净化污水工艺中的较理想的方案。FSBBR工艺池内的填料采用是新型生物载体,该填料是国外近年来创立的一种固液分离新技术。我公司结合具体情况开发、研制成功新一代中水、污水处理新技术,该技术突破传统处理方法,施工简单,管理方便,基本可实现无人管理;生物载体与进水所成角度小,接触充分,溶解性CODcr去除率高达70-98%,对污水中的油、氮等均有较高的去除率;挂膜容易,脱落快;*活性污泥培菌,可自行挂膜,微生物生长快,启动时间短,可维持较高的生化量;占地面积小,(无沉淀池及污泥处理系统)、投资省,运行费用较低,自动化程度高;载体使用寿命可达五十年之久;不产生污泥,简化了处理流程,次污染。由于该工艺有较长的过流断面可以大大阻流水体中悬浮物,*过滤出水可直接达到排放的标准。
MEBR强化型膜生物反应器
将生物膜反应器与膜生物反应器相结合,开创了膜法污水处理的新纪元。MEBR污水进入生物膜反应器,利用生长在生物填料表面的微生物膜降解污染物,使得生物反应器出水中的污泥含量大大降低,污泥的沉降性能大大提高,因而可以利用较小的沉淀体积实现生物反应器产水污泥含量大大降低。生物膜反应器出水进入中空纤维膜分离装置,由于膜分离装置的给水中污泥含量被控制在100ppm以下,膜的工作环境成倍改善,膜的通量也得以明显提高。通过膜分离装置截留水中的游离活性细菌、细菌尸体、其它悬浮物和部分大分子化合物,使水质进一步提高。被膜截留的游离活性细菌、细菌尸体、其它悬浮物和部分大分子物再全部或部分返回生物膜反应器。被膜截留的游离活性细菌会在生物反应器中被不断富集。当这些活性细菌被富集到较高浓度时,它们的生物降解作用就会明显的体现出来,以此可以加强了生物反应器的效率。被膜截留的细菌尸体和大分子物会不断循环回到固定床生物反应器中,使之在生物反应器中停留时间和浓度成倍地增长。此时,固定床生物反应器会逐渐驯化出降解这些物质的细菌菌落,这些细菌菌落将这些通常随出水排放的难降解的污染物降解。被膜截留的污泥再返回生物膜反应器,通过生物反应器降解而减低污泥排量。由此可见膜分离装置截留物的反馈可以从多方面强化生物反应器,提高生物反应器的效率。而生物反应器效率的提高可以进一步提高生物反应器出水水质,减小膜分离装置的工作压力,加强膜分离装置的处理效果。因此,固定床生物反应器和膜分离装置的结合可以互相加强,起到较好的处理效果。
生物处理法根据参与作用的微生物的需氧情况,可分为好氧法和厌氧法两大类。一般情况,好氧法比较适用于较低浓度污水,如乙烯厂污水;而厌氧法较适用于处理污泥和较高浓度的污水。好氧生物处理法可分为活性污泥法和生物膜法两大类。活性污泥法是水体自净的人工强化方法,是一种依靠活性污泥工作主体的去除污水中物的方法。存在于活性污泥中的好氧微生物在有氧气存在的条件下才能起作用。在污水处理生化系统的曝气池中,充氧效率与好氧微生物生长量成正相关性。溶解氧的供给量要根据好氧微生物的数量、生理特性、基质性质及浓度来综合考虑。这样,活性污泥才能处在佳的降解物的状态。根据试验表明,曝气池中溶解氧维持在3~4mg/L为宜,若供氧不足,活性污泥性能差,导致废水处理效果下降。为保证有充足的供氧,依靠一种设备来完成,例如曝气器。
曝气原理
曝气是使空气与水强烈接触的一种手段,其目的在于将空气中的氧溶解于水中,或者将水中不需要的气体和挥发性物质放逐到空气中。换言之,它是促进气体与液体之间物质交换的一种手段。它还有其他一些重要作用,如混合和搅拌。空气中的氧通过曝气传递到水中,氧由气相向液相进行传质转移,这种传质扩散的理论,目前应用较多的是刘易斯和惠特曼提出的双膜理论。
双膜理论认为,在“气水”界面上存在着气膜和液膜,气膜外和液膜外有空气和液体流动,属紊流状态;气膜和液膜间属层流状态,不存在对流,在一定条件下会出现气压梯度和浓度梯度。如果液膜中氧的浓度**水中氧的饱和浓度,空气中的氧继续向内扩散透过液膜进入水体,因而液膜和气膜将成为氧传递的障°,这就是双膜理论。显然,克服液膜障°有效的方法是快速变换“气液”界面。曝气搅拌正是如此,具体的做法就是:减泡的大小,增加气泡的数量,提高液体的紊流程度,加大曝气器的安装深度,延长气泡与液体的接触时间。曝气设备正是基于这种做法而在污水处理中被广泛采用的。
地埋式MBR小型一体化污水处理设备曝气类型与曝气器的功能
曝气类型大体分为两类:一类是鼓风曝气,一类是机械曝气。鼓风曝气是采用曝气器£扩散板或扩散管在水中引入气泡的曝气方式。一般乙烯厂的污水处理多采用这种方式。机械曝气是指利用叶轮等器械引入气泡的曝气方式。
所有的曝气设备,都应该满足下列3种功能:
①产生并维持有效的气水接触,并且在生物氧化作用不断消耗氧气的情况下保持水中一定的溶解氧浓度;
②在曝气区内产生足够的混合作用和水的?环流动;
③维持液体的足够速度,以使水中的生物固体处于悬浮状态。
生物吸附降解工艺利用细菌的絮凝吸附作用实现对进水中物的快速去除。城市污水中所含COD约50%以上是由SS形成的,而生物吸附降解工艺中生物吸附工艺的絮凝吸附作用对污水中非溶解性物具有较强去除效果。研究发现生物吸附段主要以吸附、吸收的形式去除的物。且生物吸附段的水利停留时间和污泥龄均较短,污泥可以快速富集进水碳源进行资源利用。如郑凯凯等研究发现生物吸附池可以快速富集进水中55.1%的物,产生的剩余污泥采用厌氧发酵方式处理,可生产碳源运用到后期生物处理,实现了资源回收。
多级A/O工艺利用微生物在缺氧好氧交替环境下的生命活动实现对污染物的去除,可以充分利用碳源实现对氮磷去除,且具有操作灵活,抗冲击负荷能力强的优点,符合近年来国家倡导的节能减排,清洁生产的号召。有研究者利用多级A/O工艺处理低碳源生活污水,对TN、TP去除率达到了79.6%和79.5%。
常规污水处理厂多采用活性污泥法作为主体工艺,而出水中通常含有30~40 mg·L?1的COD,其部分为难生物降解物,这部分污染物难以被常规生物处理工艺去除。针对难降解物的去除难点,活性炭吸附是较为有效的处理方式之一,但由于价格及成本高难以应用于污水处理。而褐煤制备的活性焦作为一种新型的吸附材料,与活性炭性质相似,且其来源广,具有比表面积相对较小、中孔发达的特点,对难降解的大分子物具有良好的吸附性能。目前活性焦在污水处理方面,主要应用于工业废水,如焦化废水、垃圾渗滤液等,也可以用于强化常规生物处理,对污染物均表现出较好的处理效果,尤其对物去除效果显着,可见活性焦在污水处理方面具有较大潜能和较好的应用前景。
FSBBR是一种生物膜法反应器,在反应器内加入新型的生物填料,生物膜覆盖在填料表面,物在生物膜内扩散的同时被微生物所降解。填料在FSBBR池运行的过程中是以厌氧、兼氧、好氧的多变环境。